Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
EBioMedicine ; 87: 104390, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2165227

ABSTRACT

BACKGROUND: The COVID-19 pandemic is an infectious disease caused by SARS-CoV-2. The first step of SARS-CoV-2 infection is the recognition of angiotensin-converting enzyme 2 (ACE2) receptors by the receptor-binding domain (RBD) of the viral Spike (S) glycoprotein. Although the molecular and structural bases of the SARS-CoV-2-RBD/hACE2 interaction have been thoroughly investigated in vitro, the relationship between hACE2 expression and in vivo infection is less understood. METHODS: Here, we developed an efficient SARS-CoV-2-RBD binding assay suitable for super resolution microscopy and simultaneous hACE2 immunodetection and mapped the correlation between hACE2 receptor abundance and SARS-CoV-2-RBD binding, both in vitro and in human lung biopsies. Next, we explored the specific proteome of SARS-CoV-2-RBD/hACE2 through a comparative mass spectrometry approach. FINDINGS: We found that only a minority of hACE2 positive spots are actually SARS-CoV-2-RBD binding sites, and that the relationship between SARS-CoV-2-RBD binding and hACE2 presence is variable, suggesting the existence of additional factors. Indeed, we found several interactors that are involved in receptor localization and viral entry and characterized one of them: SLC1A5, an amino acid transporter. High-resolution receptor-binding studies showed that co-expression of membrane-bound SLC1A5 with hACE2 predicted SARS-CoV-2 binding and entry better than hACE2 expression alone. SLC1A5 depletion reduces SARS-CoV-2 binding and entry. Notably, the Omicron variant is more efficient in binding hACE2 sites, but equally sensitive to SLC1A5 downregulation. INTERPRETATION: We propose a method for mapping functional SARS-CoV-2 receptors in vivo. We confirm the existence of hACE2 co-factors that may contribute to differential sensitivity of cells to infection. FUNDING: This work was supported by an unrestricted grant from "Fondazione Romeo ed Enrica Invernizzi" to Stefano Biffo and by AIRC under MFAG 2021 - ID. 26178 project - P.I. Manfrini Nicola.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Virus Internalization , Pandemics , Receptors, Virus/chemistry , Receptors, Virus/metabolism , Protein Binding , Lung/metabolism , Minor Histocompatibility Antigens/metabolism , Amino Acid Transport System ASC/metabolism
2.
Mol Biol Rep ; 47(9): 7283-7289, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-705288

ABSTRACT

It is well established that Escherichia coli represents a powerful tool for the over-expression of human proteins for structure/function studies. In many cases, such as for membrane transporters, the bacterial toxicity or the aggregation of the target protein hamper the expression limiting the application of this tool. The aim of this study was finding the appropriate conditions for the expression of reluctant proteins that is the human neutral amino acid transporters ASCT2 and B0AT1, that have great relevance to human health in cancer therapy and in COVID-19 research, respectively. The cDNAs coding for the proteins of interest were cloned in the pCOLD I vector and different E. coli strains (BL21 codon plus RIL, and RosettaGami2) were cultured in absence or in presence of glucose (0.5-1%), at low temperature (15 °C), and low inducer concentrations (10-100 µM). Cell growth and protein production were monitored by optical density measurements and western blotting assay, respectively. Even though in different conditions, the expression of both amino acid transporters was obtained.Reducing the growth rate of specific E. coli strains by lowering the temperature and the IPTG concentration, together with the addition of glucose, two reluctant human neutral amino acid transporters have been expressed in E. coli. The results have a potentially great interest in drug discovery since ASCT2 is an acknowledged target of anticancer therapy, and B0AT1 together with ACE2 is part of a receptor for the SARS-Cov-2 RBD proteins.


Subject(s)
Amino Acid Transport System ASC/metabolism , Amino Acid Transport Systems, Neutral/metabolism , Betacoronavirus/physiology , Coronavirus Infections/virology , Escherichia coli/metabolism , Minor Histocompatibility Antigens/metabolism , Pneumonia, Viral/virology , Amino Acid Transport System ASC/genetics , Amino Acid Transport Systems, Neutral/genetics , Angiotensin-Converting Enzyme 2 , COVID-19 , Cold Temperature , DNA, Complementary/genetics , Drug Discovery , Escherichia coli/genetics , Gene Expression , Humans , Minor Histocompatibility Antigens/genetics , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL